
Clamping of easily deformed thin walled workpieces for hard turning or grinding

Principle of D-KOMBI®

D-KOMBI®

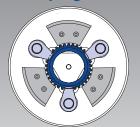
- Radial centering/clamping of the work piece with the diaphragm jaws, with quick jaw change system (same principle/ characteristic as D-chuck page 180, however with additional face clamping).
- Axial clamping with swing clamps with axial compensation.
- Actuation with double piston cylinder. Separate actuation of the diaphragm jaws and the axial swing-clamps.

Jaws are factory finished and match any chuck with no loss of concentricity.

Never, ever grind or bore jaws on the chuck!


TIR < 0,020 mm

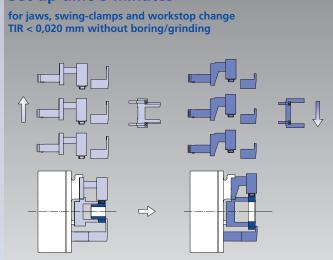
1. Loading


Centering jaws open. Swing-clamps open/swivel outwards.

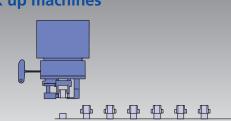
2. Centering

Centering jaws clamped

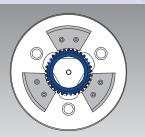
3. Clamping


Swing-clamps swivel inward + clamp axially. Centering jaws open (if requested)

4. Machining


Centering jaws open or closed

Set-up time 5 minutes



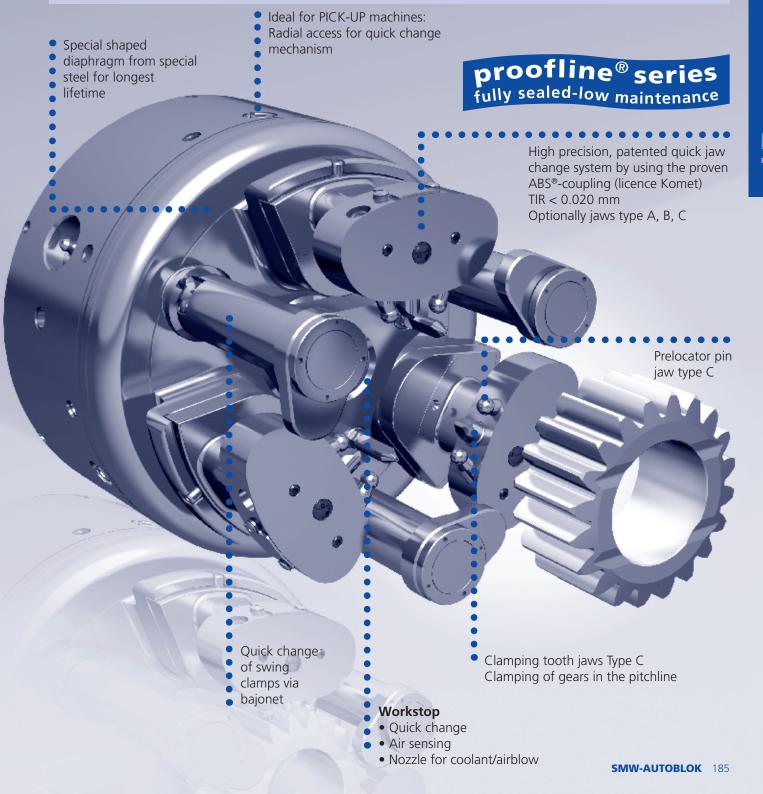
Ideal for pick up machines

Easy to operate, low maintenance, chuck completely sealed

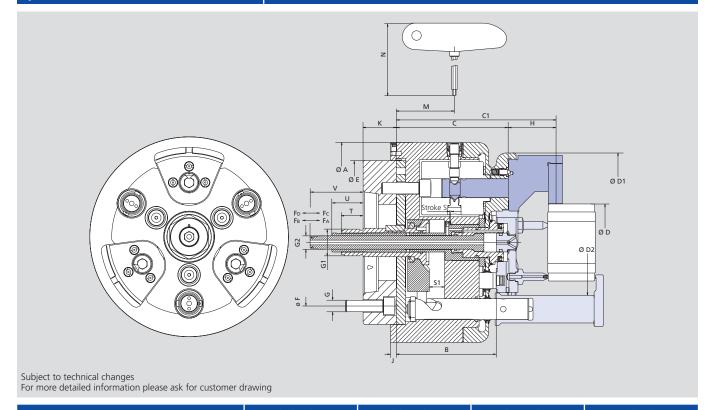
Radial clamping only is also possbile = function like D-chuck

Swing clamps are not mounted.

Clamping glossary


Radial clamping: Self-centering clamping of work pieces on the outside diameter. Depending on the necessary clamping force to drive the parts during machining thin walled components can be easily deformed.

Axial clamping: Clamping of work pieces on their face. This method is used for thin walled components. The radial deformation of the diameter to be machined can be eliminated. This is not self-centering clamping so that the work piece has to be positioned concentric.

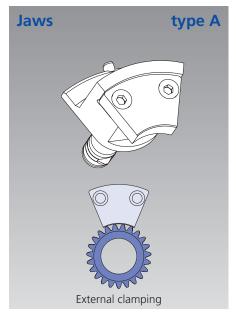

Kombi clamping: Chucks with centering jaws for centering the workpiece with the diaphragm and axial clamping with swing-clamps. After the work piece is clamped with a swing-clamp, the centering jaws can be opened (double piston cylinder necessary). The **D-KOMBI** with quick jaw change ideally fulfills these requirements. The proven design of the **D-CHUCK** is maintained completely. Additionally an axial clamping drive is integrated.

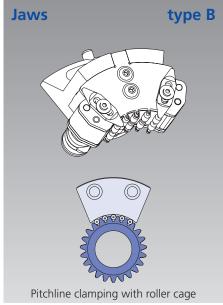
If requested the **D-KOMBI** can also be used just for radial clamping. In this case no clamping fingers are mounted and the clamping force is regulated by adjusting the pressure on the clamping cylinder.

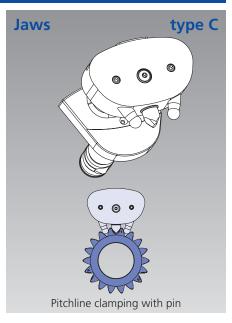
Double piston cylinder: These are cylinders with two independent pistons. Piston A drives the swing-clamps, piston B releases the diaphragm or regulates the clamping force of the diaphragm. Depending on the application, it may be necessary to have the pressure in the supply lines for piston surfaces A/B/C/D individually adjustable by individual pressure regulating valves. The SMW-AUTOBLOK double piston cylinder **ZHVD-DFR** is special designed for this application. Different rotating unions for 1 or 2 media (as an example air sensing and coolant) can be mounted to the standard cylinder.

Main dimensions and technical data

SMW-AUTOBLOK Type			D-210 KOMBI		D-260 KOMBI		D-315 KOMBI	D-400 KOMBI		
Mounting		Size	A5	A6	A6	A8	A8	A8	A11	
	Α	mm	210		26	50	315 4		00	
	В	mm	105.5		111		116	123		
	C	mm	118	3.5	13	80	130	136 -		
	C1	mm	170	0.5	18	37	192			
Clamping range without fingers	D	mm	20-	175	40-2	220	60-275	126-350 354		
	D1	mm	18	38	22	27	275			
Clamping range with fingers	D2	mm	111		153		203	268		
	E	mm	172		225		275	350		
	F	mm	104.8	133.4	133.4	171.4	171.4	171.4	235	
	G		M10	M12	M12	M16	M16	M16	M20	
	G1		M28 x 1.5		M28 x 1.5		M28 x 1.5	M28 x 1.5		
	G2		M14 x 1.0		M14 x 1.0		M14 x 1.0	M14 x 1.0		
Jaw height	Н	mm	52		62		64	-		
	J	mm	6		6		6	6		
	K	mm	40		48		48	50		
	M	mm	61.4		61.9		61.9	66.5		
	N	mm	185		185		185	185		
Piston stroke	S	mm	1.0		1.5		1.5	1.5		
Axial stroke swing clamps	S1	mm	16		16		16	16		
	Т	mm	18		10		10		3	
	U	mm	28		20		20	18		
	V	mm	51		43		43	41		
Jaw stroke at distance H		mm	1.	.0	1.1		1.2	0.87		
Draw pull min./max.*	FD	kN	0-25		0-25		0-25	0-25		
Draw pull for chuck open	Fc	kN	20		20		20	20		
Draw pull swing clamps max.	Fв	kN	6	5	9		9	1	18	
Draw pull swing clamps open	FA	kN	2	2	2		2		2	
Moment of inertia		kg·m²	0.16		0.45		0.75	2.26		
Weight without top tooling		kg	3	0	4	4	60	10	09	
Recommended actuating cylinder		Type	ZHVD)-DFR	ZHVD	-DFR	ZHVD-DFR	ZHVI	D-DFR	


^{*} Additional draw pull to the diaphragme force actuated by the actuating cylinder

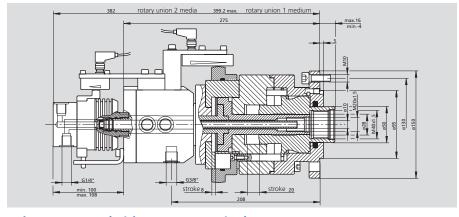

Advice: The max. allowed speed for the application is permanently marked on the corresponding top jaws and must not be exceeded. [mportant:] Never rotate the chuck without inserted jaws, otherwise the centrifugal force compensation mechanism will get damaged.


■ Clamping jaws ■ Rotating double piston cylinder ■ Installation

D-KOMBI®

Radial-axial clamping QUICK JAW CHANGE SYSTEMS

Actuating cylinder ZHVD-DFR for D-KOMBI®

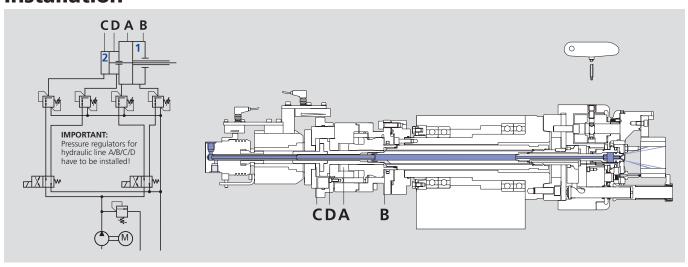

Technical features

- Special double piston cylinder to actuate D-KOMBI
- 2 independent pistons for diaphragm jaws and axial swing clamp drive
- Rotating unions for 1 or 2 media
- 2 Linear Position Systems LPS for monitoring of the piston strokes

Standard equipment

• Cylinder with kit for LPS, without LPS position sensor

LPS see page 241



ZHVD-DFR for rotary union 1 medium Id. No. 044865 (without rotary union)* ZHVD-DFR with rotary union 2 media Id. No. 044866 (rotary union 2 media included)

Piston surface			Pressure	Speed	Leakage	Weight	Moment of	Weight of	Weight of	
Axial finger (K1) Diaphragm (K2)		min./max.	max.	at 30 bar 50°C	cylinder	inertia	rotary union	rotary union		
Α	В	C	D							
push	pull	push	pull						1 medium	2 media
cm²	cm²	cm²	cm²	bar	r.p.m.	dm³/min	kg	kg∙m²	kg	kg
17.6	30.6	40.6	39.2	3-60	4000	3.0	25	0.065	0.4	1.5

^{*} To be ordered seperately!

Installation

